

LCOE – Establishing a common framework

OEE Strategy Days – Rémi Gruet

Commission européenne European Commission

LCOE - The N°1 question

- What is the cost of Ocean Energy?
- When will be be competitive?
- When will you stop needing subsidies?

LCOE – Even more important in context of dropping cost of RES

Source: Lazard estimates.

Source: Lazard, 2020, US LCOE for renewables

Why this question/workshop?

- Some announcements can be politically damaging
 - Need for consistency and realism
- Some announcements are necessary from a business perspective
- Methodologies diverge sometimes significantly
- Experts/investors will ask the painful questions
 - "Creative calculations" will be exposed...
 - Need for a common, sensible framework ?

Objectives of this session:

We want to:

- Brainstorm on how LCOEs should be communicated
- Discuss possible orientations when communicating LCOE
- Discuss which calculation criteria could be 'standardised'
- Interactive session with several polls
- In an ideal world we could also...
 - Propose a range for those criteria to be used by OEE
- What are <u>not</u> objectives:
 - Agreeing on an average LCOE for the sector
 - Defining what other companies can say or not say

Ambitious or realistic ?

- Ambitious stimulating political support
 - What's wrong with being visionary?
 - Wind did it, why not OE?
 - Does the level already matter, if the support isn't there? How ambitious do we need to be to win support?

- Realistic being credible
 - Able to disclose/prove some assumptions
 - Being able to deliver e.g. against revenue support scheme

Per technology or for all OE?

- Wave
- Tidal
- OTEC/SWAC
- Salinity Gradient
- Tidal Range

- Different stage of development
- Different financing needs
- => Different LCOE communication needs

In the future or right now?

🏏 @euoea

In the future or right now?

Current LCOEs

- OE = more expensive than all other power technologies
- Already relatively low given the few machines in the water
- Include by-products?
- Can be used for comparison with early-stage wind?
- Using future LCOEs
 - Technology will change which assumptions?
 - Costs will come down good politically
 - Gives a lot of freedom in modelling... and results
 - Which methodology? Limits of the cost curve methodology?

■ 日 り・ペッ		✓ Search		
me Insert Page Layo	ut Formulas Data Review View Help			
- : X / f.				
J.				
В	C		D	E
OFF Fir	nance WG - Project Fir	nance Mc	odel	
OUTPUTS				
Equity IRR			4.9 %	
Years to equity payback			11	
INDUTO				
General	Project lifetime (vears)			15
General	Number of turbines		1	50
	Turbine capacity (MW)			2.0
	Total Project capacity (MW)			100.0
	Turbine capacity factor (%)			38%
	Turbine availability rate (%)			87%
	Net annual project yield (MWh/year)			289,606
	Net annual yield/turbine (MWh/year)			5,792
Canau	All concerns and connection or decomprised arise (C)			400,000,000
Capex	Grid connection (ϵ)			400,000,000
	Project development, site access, ports and management (6% of capex	+ arid)	6%	24,900,000
	Contingency (15% of All capex ex grid connection, ex decommissioning)	5 /	15%	60,000,000
	TOTAL CAPEX - EX DECOMMISSIONING			499,900,000
Grants	Grant (€)			160,000,000
	TOTAL GRANT			160,000,000
Decommissioning Costs	As % of capex			6%
				24,000,000
Revenues	Wholesale power price (€/MWh)			50
	Feed-in tariff (€/MWh)			150

🎔 @euoea

Which criteria to be normalised/standardised?

- Go beyond pure LCOE towards project finance
- Which elements are common to all project carriers?
 - Access to finance
 - Cost of finance
- Do we include some political elements
 - Revenue schemes?
- Do we fully ignore project-specific information?
 - CAPEX total or per MWh technology dependent
 - Resource site dependent...

Which criteria to be normalised/standardised?

- Device capacity factor (different for each OE technology)
- Turbine availability rate
- Total cost of grid connection
- Decommissioning costs as percentage e.g. 6% of CAPEX
- Duration of a revenue support scheme
- Level of a revenue support scheme
- OPEX O&M e.g. 3% of CAPEX
- OPEX Insurance costs e.g. 2% of CAPEX
- OPEX Other overheads e.g. 2% of CAPEX
- Debt interest rate
- Return on equity